p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.17C42, C22⋊C8⋊13C4, C8⋊6(C22⋊C4), (C2×C8).382D4, C4.160(C4×D4), (C2×C4)⋊7M4(2), C2.1(C8⋊6D4), C2.2(C8⋊9D4), (C2×C4).24C42, C24.50(C2×C4), C22.85(C4×D4), (C2×M4(2))⋊18C4, C2.11(C4×M4(2)), C22.24(C8○D4), C22.52(C2×C42), C4.72(C42⋊C2), C2.C42.14C4, (C23×C4).225C22, C23.255(C22×C4), (C2×C42).991C22, (C22×C8).471C22, C22.39(C2×M4(2)), C2.14(C8○2M4(2)), (C22×C4).1608C23, C22.7C42⋊38C2, (C22×M4(2)).18C2, (C2×C4×C8)⋊37C2, (C2×C8⋊C4)⋊20C2, (C2×C8).132(C2×C4), C2.11(C4×C22⋊C4), (C2×C4).1498(C2×D4), (C4×C22⋊C4).11C2, (C2×C22⋊C8).43C2, (C2×C22⋊C4).24C4, C4.108(C2×C22⋊C4), (C2×C4).918(C4○D4), (C2×C4).598(C22×C4), (C22×C4).108(C2×C4), SmallGroup(128,485)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.17C42
G = < a,b,c,d,e | a2=b2=c2=d4=1, e4=c, dad-1=ab=ba, eae-1=ac=ca, bc=cb, ede-1=bd=db, be=eb, cd=dc, ce=ec >
Subgroups: 276 in 174 conjugacy classes, 88 normal (36 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, C23, C23, C23, C42, C22⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C24, C2.C42, C4×C8, C8⋊C4, C22⋊C8, C2×C42, C2×C22⋊C4, C22×C8, C2×M4(2), C2×M4(2), C23×C4, C22.7C42, C4×C22⋊C4, C2×C4×C8, C2×C8⋊C4, C2×C22⋊C8, C22×M4(2), C23.17C42
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C42, C22⋊C4, M4(2), C22×C4, C2×D4, C4○D4, C2×C42, C2×C22⋊C4, C42⋊C2, C4×D4, C2×M4(2), C8○D4, C4×C22⋊C4, C4×M4(2), C8○2M4(2), C8⋊9D4, C8⋊6D4, C23.17C42
(2 6)(4 8)(10 14)(12 16)(17 59)(18 64)(19 61)(20 58)(21 63)(22 60)(23 57)(24 62)(26 30)(28 32)(33 52)(34 49)(35 54)(36 51)(37 56)(38 53)(39 50)(40 55)(41 45)(43 47)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 9)(8 10)(17 59)(18 60)(19 61)(20 62)(21 63)(22 64)(23 57)(24 58)(25 48)(26 41)(27 42)(28 43)(29 44)(30 45)(31 46)(32 47)(33 52)(34 53)(35 54)(36 55)(37 56)(38 49)(39 50)(40 51)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)
(1 21 31 50)(2 64 32 40)(3 23 25 52)(4 58 26 34)(5 17 27 54)(6 60 28 36)(7 19 29 56)(8 62 30 38)(9 61 44 37)(10 20 45 49)(11 63 46 39)(12 22 47 51)(13 57 48 33)(14 24 41 53)(15 59 42 35)(16 18 43 55)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
G:=sub<Sym(64)| (2,6)(4,8)(10,14)(12,16)(17,59)(18,64)(19,61)(20,58)(21,63)(22,60)(23,57)(24,62)(26,30)(28,32)(33,52)(34,49)(35,54)(36,51)(37,56)(38,53)(39,50)(40,55)(41,45)(43,47), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10)(17,59)(18,60)(19,61)(20,62)(21,63)(22,64)(23,57)(24,58)(25,48)(26,41)(27,42)(28,43)(29,44)(30,45)(31,46)(32,47)(33,52)(34,53)(35,54)(36,55)(37,56)(38,49)(39,50)(40,51), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,21,31,50)(2,64,32,40)(3,23,25,52)(4,58,26,34)(5,17,27,54)(6,60,28,36)(7,19,29,56)(8,62,30,38)(9,61,44,37)(10,20,45,49)(11,63,46,39)(12,22,47,51)(13,57,48,33)(14,24,41,53)(15,59,42,35)(16,18,43,55), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)>;
G:=Group( (2,6)(4,8)(10,14)(12,16)(17,59)(18,64)(19,61)(20,58)(21,63)(22,60)(23,57)(24,62)(26,30)(28,32)(33,52)(34,49)(35,54)(36,51)(37,56)(38,53)(39,50)(40,55)(41,45)(43,47), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10)(17,59)(18,60)(19,61)(20,62)(21,63)(22,64)(23,57)(24,58)(25,48)(26,41)(27,42)(28,43)(29,44)(30,45)(31,46)(32,47)(33,52)(34,53)(35,54)(36,55)(37,56)(38,49)(39,50)(40,51), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,21,31,50)(2,64,32,40)(3,23,25,52)(4,58,26,34)(5,17,27,54)(6,60,28,36)(7,19,29,56)(8,62,30,38)(9,61,44,37)(10,20,45,49)(11,63,46,39)(12,22,47,51)(13,57,48,33)(14,24,41,53)(15,59,42,35)(16,18,43,55), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64) );
G=PermutationGroup([[(2,6),(4,8),(10,14),(12,16),(17,59),(18,64),(19,61),(20,58),(21,63),(22,60),(23,57),(24,62),(26,30),(28,32),(33,52),(34,49),(35,54),(36,51),(37,56),(38,53),(39,50),(40,55),(41,45),(43,47)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,9),(8,10),(17,59),(18,60),(19,61),(20,62),(21,63),(22,64),(23,57),(24,58),(25,48),(26,41),(27,42),(28,43),(29,44),(30,45),(31,46),(32,47),(33,52),(34,53),(35,54),(36,55),(37,56),(38,49),(39,50),(40,51)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64)], [(1,21,31,50),(2,64,32,40),(3,23,25,52),(4,58,26,34),(5,17,27,54),(6,60,28,36),(7,19,29,56),(8,62,30,38),(9,61,44,37),(10,20,45,49),(11,63,46,39),(12,22,47,51),(13,57,48,33),(14,24,41,53),(15,59,42,35),(16,18,43,55)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)]])
56 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 4A | ··· | 4H | 4I | ··· | 4P | 4Q | ··· | 4V | 8A | ··· | 8P | 8Q | ··· | 8X |
order | 1 | 2 | ··· | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
56 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | D4 | M4(2) | C4○D4 | C8○D4 |
kernel | C23.17C42 | C22.7C42 | C4×C22⋊C4 | C2×C4×C8 | C2×C8⋊C4 | C2×C22⋊C8 | C22×M4(2) | C2.C42 | C22⋊C8 | C2×C22⋊C4 | C2×M4(2) | C2×C8 | C2×C4 | C2×C4 | C22 |
# reps | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 |
Matrix representation of C23.17C42 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
4 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
4 | 15 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
4 | 0 | 0 | 0 | 0 | 0 |
16 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 4 | 0 |
G:=sub<GL(6,GF(17))| [1,4,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[4,0,0,0,0,0,15,13,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[4,16,0,0,0,0,0,13,0,0,0,0,0,0,4,0,0,0,0,0,0,13,0,0,0,0,0,0,0,4,0,0,0,0,16,0] >;
C23.17C42 in GAP, Magma, Sage, TeX
C_2^3._{17}C_4^2
% in TeX
G:=Group("C2^3.17C4^2");
// GroupNames label
G:=SmallGroup(128,485);
// by ID
G=gap.SmallGroup(128,485);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,112,141,232,1430,100,172]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^4=1,e^4=c,d*a*d^-1=a*b=b*a,e*a*e^-1=a*c=c*a,b*c=c*b,e*d*e^-1=b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c>;
// generators/relations